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Dynamic Response and Control of Multipass Heat Exchangers

MASAMI MASUBUCHI

Introduction

Pure parallel-and counterflow heat exchangers have been analyzed
(1), (2}

exactly and their controllability have been extemsively

discussed in the literatures (3'4’5). For multi-pess heat exchangeq%ﬁib?g_

many kinds of researches on the mean temperature difference (6~ 1Q§;¢“f

and on steady temperature distributions (11) have been published,
but there have been few on dynamic amnalysis,
However, from the control engineer’s point of view, process dynamics
is one of the most important subjects.
The dynamic response of the system is dependent not only on the
mean temperature difference, but also on other system parameters such
% aé‘ tluid veloaies. heat capacities of the fluids and tube-walls, "‘rﬁ"’g

the frequency response analysis is simpler and is used throughout
this paper.

The author extended the P.Profos’s basic partial differential
equation (12) and analyzed exactly the dynamic characteristics of
1-2,%,4, - ,2n,2nt+]l pass heat exchangers.

The 3rd order characteristic equations goverming the heat exchange
processes in each multi-pass heat exchanger, and the transfer function
formulas which involve the roots of the said equation are obtained
and presented.

Numerical examples of frequency response of each case with mo solid
capacity have also been shown,

Nomenclature
The following nomenclature is used in this paper:
A n? = heat exchange surface area
a dl, = kA/q,’ 518 kA/ql

1 Fumbers in parentheses refer to similarly numbered references

in bibliography at the end of the paper,
2
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g dl. = hA/q, a]= n A/ay, d;= h_4/q

| dl. = hA/(Cv), blzhA/(Chvl), b2=h1A/(Chvl), bs=hSA/(CBv1)

C kcal/m°C = geries and side capacity

H m = total length of shell

h keal/m’mn°C = film coefficient of heat transfer, h  tube-side,
h shell-side, hs side capacity-side

k kcal/mzmn°c = overall coefficient of heat trarsfer

L mn = dead time, H/v=L, H/vl= Ly

1 di. = Y/H

)¢ = variable in auxiliary ecuation

q kcal/mm°C = ww, Q= V¥

r a1, = vilv = L/Ll

8 dl. = jo, J=yT

1 mn = time

U n = peripheral length of heat exchange surface

u = variable ( see Appendix )

v = variable ( see Appendix )

or m/mmn = fluid velocity, vy tube-side, v shell-side

¥ keal/m°C = heat capacity of fluid per unit length

Y n = running length of shell measured from shell input

O, ay, X = parameters defined by Equation (3)

By» 62, 83 = parameters defined by Equation (3)

® °c = temperature of shell fluid in lumped system

e °c = temperature of fluid, © shell~aide, 91,62,63,-—-
tube-side

T ali. = /1,

S’ °c = temperature of solid,gkseries capacity,&;side capacity

w dl. = eircular frequency

and dl, = dimensionless
Subsecripts: 1,2,3, == = tube-gide, no subscript = shell-side
' i = input, o = output
h = series capacity, s = side capacity

Basic Assumptions

1. Fluid velocities, heat transfer coefficients are all congtant and )
do not change with the temperature of fluid or heat exchange surfaces,

2+ Bach crogs section is constant,

3. Complete mixing in crosswise directions of each flow exists.
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4, The heat conductivi- of tube-and shell-walls are infinite in
the directions at ri = angles to the flow and zero in flow
directions.

5« There is no heat loss to outer circumferences.,

The transfer function is taken to be the dymamic ratio of the
outlet temperature of one fluid to the inlet temperature of another
fluid, Considering sinusoidzl solution, sinusoidal temperature
variation is superposed on the steady state temperature, so the
above definition is enough to conei‘.r,

Fundamental Equations

The following relation exists between a fluic at temperature ©
and a solid surface at temperature § through which heat exchange
takes place.

39+

v=hl
'a]' (}P E’)

Using nondimensionsl?q-, f and o, gives

> +?-e-=&'(‘f° 6)

If the tube-wall is infinitely thin,ff can be replaced by the
temperature of another fluid, and & replaced by a. This fundamental
equation applies to © 61,92, -—= in the following,

1-2 Pass Heat Exchanger (13)
Case P-C:

The "P-C" flow pattern is shown in Fig.l. In this case, the tube
fluid flows first from left to right, turns around at the right end,
and finally flows back to the left, resulting in a parallel-flow
followed by a counter flow. The shell fluid is always assumed to
flow from the left end to the right end. Both inside and outside tube-
walls are assumed to be infinitely thin so that there will be neither
gseries nor side capacity to be considered.

Agsuming equal dimensions and conditions for each tube-pass and

./
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Fig.2 Case P~C {a) shell-side
input; (b) tube-slde input.
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Fig.l 1-2 pass heat exchanger show-
ing symbolism.

equal U for shell-and tube-fluid, the fundamental equations are,
( %% + %% =2,(0-6)
) g&-bﬁga,(g_al) (1)
R lﬁ ~a(9 +0)ta(e,6)
The solution of Equations (1) for a sinusoidal input signal (@¥)
..(gc,e”“ +B,C.e +ﬁ3c,eB'°’)
8,= (d.Cé"p'wzCe +4:C,E t,”l)e (2)
6= (Ce™+ e e, o)t

where, Cl’ 02, 03 are the integration constants, and «, 8 are:

are

WEFvern o N Hvsva, 0 BT R (3)
Btz — p = Y ﬁ,:-——a-'——
Brs+a,' M p+sta Psts+a,

pl, Poy p3 are the three roots of

P ¥ (zavrs)-p(s+af-s(sta)reta)ta}=0

The roots are all complex ( see Appendix ).

Shell-side input: The C,, C2’ C5 can be determined from the following
boundary conditions ( Fig.2(a)).

0202 8 =8, =BC+pLatfls =0
L=1: 6,26, orpC, e“+{31¢ e"*+psc,e
= del 4 g ey ap, e

The substitution of the results thus obtained into Equatiomns (2)
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1-0 1= e.,2=0 0 .
(@ (o) Fig.4 With side capacity. Fle.5 With . 4 st
Fig.3 Case C-P (a) shell-side in- .5 ser iz and side
put; {(b) tube-side input. capacity.

and solving for 620/8i (= GPC—st(S)) gives the transfer function,

Qpe-st(s) = M&MJ“' (oo )osB - ¥, B) e+ (N3=B X8, - oz R )e B
@-p)Bs- Px)e" + (02-B)(B: - PJ)ePz + O3 -BY B~ Ble By

(5)
If input and output are exchanged with each other (Fig.2(b)), we

obtain the following transfer functiom through a similar procedure:

Gre-tetsy = LaBa A (o - ) B - - BT P
(6)

Static Characteristics:

This is the case when s=0 in Equations (5),(6). For s=0, from
Equation (4), three roots are

". =0, \91/3 =—3.¢;}af+a_,’-
- = - V.
{0‘"1’ % =323 Bz -

B = 1., ,Ba_z-af%ﬁirv ‘ﬂk‘= Eifafﬁg—

Introducing these values into Equations (5),(6), and rearranging,
we obtain

which give

2
GQre-st (0) = a+a +Viothlr &)

2
Cire-ts O " +a.+%wth T &)

, where, J=a+a}

/ /

(5),(6) are the static characteristics known as temperature efficiency
of the heat exchanger (14).
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Case C-P:
Counterflow at input side, parallel-flow at output side ( See Fig.3 ).
The fundamental equations are as follows,

(3 - -ae-a)
R EENCETY (M)

(v22 + 28 -5(4-6)+2(6-b)

By solving these equations, the 3rd order characteristic equation
identical to Equation (4) can be obtained. The temperatures are:

g = (u,(;em’éfogclem-}oécsem) es:__
8,= (3.0.6"5{ pzcle"hp;cse"" ) e (8)
b= (CeMy et 4 eBlyesT

where, Cl’ 02, 03 are the constants of integration, x, § can be

expressed by the same equation as (3). Through the same procedure as
before, we get
R+R

- ~oig)en B - R
(6 = (BB, Yo -06)E B 4 (R, X B -2 H 0B B
Gaai® % (B0 (B-oebs [R5~ 3 -0t R+ 6B %~ (R0 ))eB

(9)
Gep-ts€) = Brta-(A-uee? + (R~ (B - s (B -a-(8,- o ))e®
o~ oo (B ok VJeR + ol ~ (B -o(YJeP0, B, - (Rl

The static characteristics are, (10)

from Equation (9) ch-st(o) = ry +; %ﬁw‘hﬁ

from Equation (20) Gl'cp-‘lS(a)-‘— 2
|

With Side Capacity

Assume that the side capacity ( thermal capacity of shell wall )
has infinite thermal resistance in the axial and no thermal resistance
in the radial directioms,

22,
+A VTwthyT

In the case P-C ( same as C~P ), for example, the fundamental
equations are ( See Fig.4 )




22428 -5 (p-6)
Lez_lf?.at - -
%~ 58 T2 (0-6) (11)

[+ 420 - a(g-0)+ala-0)+a(%-H)

LR

In this case, the characteristic equation (4) changes somewhat
and takes the following form

P+ P (22 +vs + %%:)—F(s#—&f

_s(s+a.){v‘(s+a.)+za+S+bs(s+a,)} =0 (2

With Jeries and Side Capacity

Assume that the series ( solid capacity of tube-wall ) and side
capacity have infinite thermal resistance in the axial and no resistance
in the radial directions. In the case of P-C, for example, the
fundsmental equations are ( See Fig.5 ),

(2843 2a0(g,-0)
B -

\ b?C'i'%g =X {%-0 )1—&_,(%,_—9)1-&’;((?5—6) (13)
24 =h(6-%,) +ba(6-4,,)
%ﬁgg = b (6%, )+ b, (B8~ Fnz)

{ %3%} =:Ek (6)-{ﬁ;)

From the above equations, the 3rd order characteristic equation
with complex coefficients can be obtained. The result is:

2 za.g b.) a(sth)
FH’ (*S+S+b‘ s+bs:b,J P[sf6+h+b,_

o BlEhI e Utk yslal, L Aok
s( S+b +by (st+b,'+bl)f as+b+b +$+\>5 +s+b+5 :] =0 (1)
and Equations (3) changes to
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Fig.6 Case P-C, 1-3 pass heat ex- Fig,7 Case C-P, 1-3 pass heat ex-
changer, changer.
b a b a
N = Sthtbs _ S+h+b§ ! (15)
- st ) - St+ /
—pts +-—-b—a’ P+s+—bi— /
S+b+b, & $th +b,

The transfer functions may be obtained through a similar procedure,

1-3 Pass Heat zxchanger

Case P-C-P:
This is a parallel-counter-parallel flow heat exchange process.

The fundamental equations are as follows, when no solid capacity exists,

(2, 201 - g (-
344+ 20 - 2,(0-0,)

%ﬁ%’-'%ﬁ?"='l.(6“-8})

) P (16)
3242 =a,(0-9)

722 + 3 <2(6-0)+2(8-0) +a(8-0)

2C
The temperature variations of each fluid when input fluid temperature

change is sinusoidal (@5T ) are:
(8 =(ADEDEtranet A, bl (T
6, =D ™ o(zgé‘“-ro(,ge“) e an
8 =(and g e A ett- A, e
8 =(pe't+ Mo

where, Dl’ D2, D3, A4 are the constants of integration, and pl,p2,p3

are the roots of




P+ P (30+rs) -p{a,tsT raa}-sS+a)ra+s) +3a}=0 8
p4 = - ( al + 5 ) (19)

The o, R are given by -guation (3).
If shell input is considered, from the similar boundary conditions

as 1-2 pass type, as shown in Fig, 6(b), the constants of integration
are determined and the transfer function GPCP t(s) 30/91 is

obtained:
Gpcp-st (s)= [(dzﬁ uﬁzxzﬁa “3\(3,’ e EH‘)

(%dezps)(zﬁ‘“ )(eaw"ﬂ )+(°‘ b= %BY2po)(e bh_ o n’)]/ﬁs (20)
where, A; e (o, - Br2(B.ps) - (o - a,)]+e"‘(o(z-,e>,)[z(f53 -B) — (/3 - o]
‘e (o(,‘B;)[Z(ﬁ."ﬁz)“(%")(zﬂ“’e [°(«(ﬁz‘Ps)Wt(ﬁa‘ﬁ-)Ws(BrBz))

and

(21)
Changing input and output relations as in Fig.6(c), we get
h
G pcp—-tS(S) Kd' B - (dz‘h)}( *V +{dz —(a3- N}(ﬁa th E‘Hm)
4 {ols =Py - (- B+h_ Ps*h
{ -Bs - (4 B)}(e e )]/ (22)
Case C-P-C:
This is the case of counter-parallel-counter flow heat exchange
process. See Fig,7(a). The fundamental equations are:
(26, _ 26, _
%_ 3 - = 2,(0-86,)
{ Bl szr ‘_aq 9__6%) (23)
%% =2,(6-8)
kvw + 1% = a(6-0)+a(6,-8) +A(&—0)
From which we get
( 6. = (o(,D,emH(zD;e“' %D,e +Ase )Q
-(p,De +Apze +/_>,De )e
(d.DeQM,b e”"+a,n,e"’“ A,e et (24)
kB (e + pep e

10
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where, D, D, D3, A5 are the integratiom constants and p,, p,, Ps
are the three roots of ‘

V+pGBa+rs)- bi(a,i—s)‘ -aaj-sis+afr(a+s) +3a}=0 (25)
and PS -=a +s (26)
@, B can be expressed by Equation (3) as before.
Shell side input: From the boundary conditions shown in Fig.7(b),

we gut the following tramsfer function through a similar procedure

as before,
Gepe-st (5) = (§2°‘3'R’X°‘-Bf°‘=ﬁ)(e’“"¢ e"‘"’)
+ (2a,- B,)Y(ops = %P, X AVl P ﬂ’?)
+ (20 BeYoop-au s )€ - e"ﬂ’sﬂ /s, -

were, 8 = B (ap-an) + Y (hpe-ap ) + € i, i)
+€ fez(w&)(dr —u.ﬂ;g,)+e"‘(za,-szq.-p.~ozs«g,)+eb(2ds-ﬁs)hz-p,-a.¢,)] (28)

Tube side input: From the boundary conditioms in Fig.7(c), we get

the following result:

Gepe- 13 ()= o= Bim G BOY(E™™- € Pho{ot-- b RH{eH 2. P )
Hot-p- @Y e By @

1-4 Pass Heat Exchanger

Case P-C-P-C: Agssuming as before, the fundamental equations are:

R+ 3R -a-e)

- 2% =2,(0-6)

¢ f;&-\—%% = a,(B-8) o
$T-32=20-0)

132+ 3 = 2(0-0)+2(8:-0) +2(6-B) +a(,-6)

11




6 6666 6.

0. Ou 6

8 (o () (Y] ©

Flg.8 Case P=~C~P-C, 1-4 pass heat Plg.9 Case C-P~C-P, 1-4 pass heat
exchanger. exchanger.

From which, vwe get
6 =(pe ° +&E,eg"+ﬂ553 B | A oBl) e
6, =@, & Ly o £, 8 ols g ey Bs€ )
l'e, =(a e.e‘ﬁﬁzezé%s,e“ A@“’? o1

By =(aE,€ +0(7.E,_ gﬁwgg, &L B e ")e

. O ::( |fﬁuﬁ' Ezfg%g*'Eifﬂsl)

where, El’ 32, E3, By 35 are the constants of integration, «, B

are obtained from Equation (3), and Py» Pys P are the three roots of
the following equation,

P+ P(4a+rs) -p(a,+sY-s(s ta{r2,+8) t4a} =0 (32)
Py = = ( a8y + 8 ) (33)
=a +8 (34)

Shell input: From the boundary conditions shown in Fig.8(b), we get
the transfer function

Grepost(®)=2 (P 3 (C Yo -olsg.)el + (o(z-B,)(o(sg. -4 pdeR
+ (Cb~Ps )0~ o%B,) e3]/A (35)
where, 4y = %[@-Bl){«t d}"Z(ﬁ;le)}Qh"‘(«z’ﬁlﬁs A% 2(,3;3.26
+ (dls—R)fat- o6~ 2 (; -ppelit e *[(«.-5.)(;3, B)ek
+ (B XA-greks (g )(p-p e

Tube input: See Fig.8(c). The transfer function is:

12
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Grrepe-1a(6) = (M o)~ (- e e
Htohs- (-pojet B famg - op ) ot

(36)
Case C-P-C-P: The fundamental equations are, ‘]// 4

( }Q, l%-—%(e -6,

%M £ =2,(0-6.)
) m. 12:~a..(e—5,)
p-)

%-f. %% = Et (0“94)
| 1332 +35 = 2(0-0)rag-0)a (G 0)rA G 0)

The transfer functions can be obtained through the procedure
described before:
Shell input: See Fig.9(b).

CTCPCP‘St $)=2 (e‘,t\. € )[(d’- ﬁs)(dl Bz- «x&) eR *h
1~ P \X2 Pl"'& 2 ‘. g h
Tube input: +(:ee g’j?idgp(sc)%&)e + (B, Yo~ o, e ] /4. (38)
Grepep-2s) =( e+ ety ;- (e-pi} e
+Hot- ﬁr(&rﬁs)}eh {Ae=B, - (4=B))] eh; /4, (39)

vwhere, Py» Py» Py are the roots of Equation (327, a, P are to be

obtained from Equatioms (3), and p4, P; are given by Equations (33)
and (34) respectively

and, a; = eflop- (o(rs,)}(zq.-ﬁ,)e {0 B—(06— ﬁs)}(% BIe®
+{cu ~Pe- G- BK 20~ B)e® + e fos-g,~ (4B e
+0a{ols- B, ~ (o3~ &Y eb + d"{“z B.— (=P} eh] (40

(37)

Cases With More Than Four Tube-passes

The above mentioned procedures can be equally applied to the
heat exchangers which have more than four tube-passes,

The procedure is rather complicated when the number of tube-pass
is odd.

For example, let us consider the (2n+l) pass heat exchanger:

13
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0
-3
-4 -90°
'509
-518
- 519
- 553, P-C 0 180
-—-\\\ 6.19.P C ureporullcl -flow) | = — L\ W —~,
o " 7.96,M (botn fluid mixed case) -20r i e
cC—F : )
Pig.10 Comparison of static charac- -40¢ g ad C
{ZEEE
teristics of multipass heat exchang-
:rs for r = 1, total aj = toetal a = Q] N " =0

Flg.ll Frequency response of 1-2
pass heat exchangers for r = 1, aj =
1.

The 3rd order characteristic equation is;
For the types P-C-Pew—w—=—
3 2
b+ V{n+0a +vs} - b{(a,t s)raa - s(srafrQ+s)+(ont )a}=

which corresponds to Equation (18). The remainder p values are given
by n, n-1 repeated roots of Pys Pg respectively,
For the types C-P-C

P+ \vz{(m.-n)agws} - b (a+s)-aa}- s (s+a,)fr (2, +s) +@2n)a) =

which corresponds to Equation (25). The remainder p values are given
by n~1, n repeated roots of Py» Pg respectively,

(41)

(42)

For the (2n) pass heat exchanger, the characteristic equation
corresponding to Equations (4) and (32) is as follows for both
P-C-P=C and CePeCePomm—— :

P+ P@ana+rs) - p (a,+sy-5(s+ 2..)5?(31- antmay =

The remainder p values are given by n-1 repeated roots of Pg» Pge
Thus, the dynamic response of these multi-pass heat exchangers
can be obtained through the use of these roots. The order of the
equations never exceeds three so long as all tube-passes are identiceal
and the mumber of shell pass is one.
If the number of tube-pass approaches infinity, this method becomes
very complicated, but on the other hand the temperature gradient in
14
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180°

e o
o 1 0—~w
Fig.l2 Frequency response of 1-3, l-4 pass heat ex-
changers for shell-side input, r = 1, total aj =
total a = 2.

one tubepass becomes almost zero, therefore we can consider this
case as a crossflow type heat exchanger with both fluids mixed
normzl to the directions of flow respectively. The static character-
istics of this case has already been obtained (12, Although the
dynamic respomse of it is relatively easy to obtain, since the dead
time may not essentially be equal, the phase characteristics can not
be obtained. Consequently, we can use only the static response
formulas to obtain the limiting value of dc gain in this case.

Numerical Example of Frequency Response

Static and dynamic responses are compared using the obtained
transfer function formulas neglecting the heat capacities of solid.
A set of the system parameters used are: r = 1, total a = total a = 2,
In other words, equal heat exchange conditions for all heat exchangers
are assumed.

Fig,10 shows that the dc gain patterns possess quite systematic
relations each other, Note that the respomse of a heat exchanger
with more than two tube-passes lies between C and P. Also note that as
the number of tube-passes increases, the effects of counter-and
parallel-flow in individual passes are averaged each other and the
response approaches to the value when the number of tube-pass is infinity.

Fig.ll shows the frequency response of 1-2 pass heat exchanger.
Note that the phase curves of GPC_St(jw) and GCP_tB(jw) has a

15
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(a) Lumped-parameter model of 1-2 pass heat ex-
changer,

\STEP INPUT 6

RESPONSE 6,

0 5 10 mn
{c)~1 1Indicial response.

0
]
— LUMPED ]
4-90
b FOURLUMPS 1
db| "7 DISTRIBUTED 3
(THEORETICAL) 1
Of—f—— —r—]-180°
R Q b
-20f s
-40 N
or T 0=l
(c)=-2 PFrequency response for shell-
input.

. ; 77

[

(b) Analog computer circuit.

Fig.l3 Analog-computer test.

peak value and gain curves are oscillatory ror a certain rrequency
range, P and C denote the respomses of the pure parallel and counter—

flow heat exchangers respectively.,

Fig.12 shows the responses of the 1-3, 1-4 pass heat exchangers for
shell input. Note that the response curves may be oscillatory about

w > 1050

From Figs.ll, 12, following results may be observed and summarized:

(1) The phase lag increases with the number of tube-passes,

(2) In the very low frequency range, the gain approaches to the value
given by the dc gain and phase lag is small, which means the whole
length of shell-pass and tube-pass are effective,

16




(3) In the medium freouency range, input and output relations have
a merked effect on the freguency response characteristics.

(4) In the higsh frequency range, both the phase :nd the gain curves
become oscillatory for w>» 1,5, which misght be due to the inter-
action between shell-pass and tube-rass.

(5) The phase lag would be larger and the gain would be more attenuated
when s01id capacities zre added in a prscticnl hezt exchanger,
ecpecially at high freguency ronge.,

analog Computer Test

Although several analog circuits for a pure parallel-and counter-
flow heat exchanger have already been published (16)'(17), the author

devised a simpler method using ordimary analog computer to investigate
the dynamic responmse.

Considering case P-C and dividing the heat exchanger with no wall
capacity as shown in Fig.13(a) to four equal lumped systems, gives

-%—l?-c' +(a.|+|)3, = B + 2.0,

%%-“" (l."’ neo, = Bl t a‘®2

4& 1 (2,41)6, = 6, + 4@,

dbt(a,+1)8,=0, +a@y

%-&(&.H) B=6, + 2,

D) =6 +2,8

8ri@+)g=6 +a@.

& +at)8=6, + 2,®,
Y%-{-(ZQJ’\)@. =®{,+3.(04+63)
rﬁ@(t-}(za-&-t)@, =@, +2.(6: + 6,)
145402 +1)8, =6, + a(§ + §,)
(v 42+ (22 +1)8, =0, + A (5, + 05)

The analog computer circuit using the same system parameters as in
the former numerical example is shown in Fig.l3(b).

(44)
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Flg.l5 Experimental results.

Fig.13(c) shows the frequency respomse and the transient response
for shell-side input. In some frequency ranges the phase curve showvs
evidently a peak value, which would approach the one for the exact
distributed system as the number of lumps increases.

Experimental Results

The frequency response of the multi-pass heat exchanger is quite

different than the others for 1-2 pass as has been demonstrated by the
numerical example of Fig.ll and Fig,l2.

The author has made experiments on a two-pasSs heat exchanger as
shown in Fig.1l4. The length of the heat exchanger was chésen 10 meters
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80 as to cover theoretical peak of the phase shift curve., The heat
exchange process is water-to-water. The shell material was "polynite®
in order to decrease the effects of side capacity: tube-pass was thin
( 0.3 mm ) copper tube. The test conditions are:

for 1 for
A = 0,368 m2 shell-side input | tube-side input
C,= 8.815X107> keal/m°C
C = 122,7X10™ keal/m'C a 3,01 2.86
H=210nm a 0.45 0.43
= H/v.= 1 mn ~
i}= v %io s/mn, r =1 a'.l; 2’9: 6.12
w = 0,102 keal/m°C 8’ *9 0.81
w = 0,682 kcal/m°C 8s 0.046 0.04
b 70.8 62.5
v, 68,7 70.8
v, 0.25 0.22

Temperature was recorded by Yamatake-Honeywell Electronik Potentio-
meter with bare Cu-constantan wire ( 0.2 Q ) as the temperature

15
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sensing elements, the respomnse speed of which is sufficiently high
for the dynamic responmse measurements,

The experimental results which involve the effects of series and
side capacities are shown in Figs.1l5, 16.

Fig.15(a) shows the frequency responses for shell-side input, (b)
for tube-side input. Favorable agreements are seen between the
theoretical and the experimental results, Four cases in Fig.l5 each
corresponds to the four cases in Fig.1l6 which shows the transient
responses,

Note that the phase shift characteristics of case is quite
similar to that of case (:) » but the gain characteristics is different,
this may be due to the difference between the heat capacities of the
input side fluid and output side fluid.

Although the same remarks can be said for the cases @ ’ @, the
effects of large dead time are remarkable.

Control of 1-2 Pass Heat Exchanger

As can be seen from the experimental results, the choice of input
and output are especially important for control applications. This
fact can be evidently seen in the closed loop response as follows:

Fig.17 shows the responses for shell-side input whem P and PI
control actions were used.

Above figure im Fig.l7 resulting from the case (® in Fig.l5 shows
very stable response; lower one from the case @ in Fig.l5 shows far
unstable response,
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Appendix

A technique for obtaining the roots of the characteristic equation
is to be described. In general, the third-order characteristic
equations with s = jw may be written in the form

P+ p° ( mo+Jn ) +p (m,y+ n, ) +mg+ oy =0 (45)
vwhere m's and n's are real numbers, and are function of the variable
We
Substituting p = u + jv into the above equation, and equating
both the real and the imaginary parts to zero yield the following
two equations.

n1+ u( m, -—2vn1 -3v ) v ‘1 -vn, + By = 0
v3+ v n1+ v(~- n2-2un1 ~3u ) e n, -un, - ng = 0 (46)
Three pairs of curves can be drawn on the u-v complex plane from
these two equations, and the three roots Pi» Po and P5 can be
found from the intersecting points of the curves,
As an example, consider Equation (4) with r = 1, and a ~a=1.
By letting 8 = jw, the equation becomes

PP Ap2+jw ) +p(wl-1=2jw)+4w’+jw(wi-3)=0 (aT)

22




D e

C‘p,P'C lo_

o= PRI, L

Fig.18 Auxiliary curves to obtain the roots of
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In order to find the values of p's for w = 2, first, the pair of
equations corresponding to Equation (46) are found,
u3+ 2u2
v3+ 2v2

+u( =3v° ~4v +3 ) —2v2 + 4v + 16 = O (48)
+v( 3 -4u-3) 20> +4u-2= 0 (49)

By letting u = 3%,2,1,0, and etc. in Equation (48), two values of
v’s that satisfy the equation are evaluated for each value of u.,

The result is the u~curves shown in solid lines in Fig.l8., The
v-curves are obtained in likewise manner, and are -shown in dotted
lines in the same figure., The three intersecting points are the
roots of the Equation (47).
Although the accuracy of the p!s may be improved by expanding
the u, v scale about the points of intersection, the following
technique used by the author is recommended for its simplicity.
Considering the regeom u> 0, v> 0 only, and expanding scales, one
obtain p, = 0.89 + J 2.16, Next, divide Equation (47) with w = 2
by p~ 0.89- j 2.16.
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p*+ p(2.89+j4.16) =3.4135+35,9448 (a)

po= p°(0.89+32.16)

02(2.89+34.16)* p(3 -4 )
22 (2.89+34.16)+ p(6.4135-39.9448)

—

p(=3.4135+35.9448)
P(~344135+35.9448)+15.878783+j2,082288

0.121217-30.082288
(b)

In this division, 0.89 and 2,16 are modified individually so as
to reduce the residual (b) as small as possible, The final results are
0.8950 and 2,1630, Then from the quotient (a), obtained through this
procedure, the rest of p values can be easily obtained. The values
are: .
Py = = 2.5320 - § 2.0902
Pz = - 0.3629 - § 2.0728

Although this division may appear to be rather troublesome, this
is more efficient than obtaining each intersecting points separately.

Applying the same procedure for each w, other p values can be
obtained as shown in Fig.l9
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